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6.774 Fall 2004: Chapter 7:
Dopant Diffusion and Profile Measurement

Thus far we have discussed major topics including:

• Wafer fabrication and cleaning
• Point defects in silicon
• Details of silicon thermal oxidation, including 2D effects

Portions of these notes are reproduced with permission
from material by Plummer, Deal, and Griffin.

During the next several lectures, we will discuss the accurate
control and placement of active doping regions, through the 
process of dopant diffusion.

Today:
•introduction to diffusion in silicon (Ch. 7)

Reminder: course web-site:
http://web.mit.edu/6.774/www/
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Diffusion: Introduction to Basic Concepts

• Placement of doped regions (‘deep’ source/drains, source/drain extensions,
threshold adjust, etc.) determine many short-channel characteristics of MOSFETs
• Total resistance impacts the current drive
• As device shrinks by a scale factor K, junction depths should also scale by K
to maintain same E-field patterns (assuming voltage also scales by K)
• Doping of the polysilicon gate affects gate depletion and limits how well the
gate voltage controls the channel potential
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R (ohm) = ρ (ohm-cm) L/AGeneral form for resistance:

A= W*xjL A
W

W
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• The sheet resistance can be experimentally measured using
a four point probe set-up, as discussed previously, or a 
Van der Pauw structure.
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Resistance of the ‘extrinsic regions’ (i.e. contacts, source and extension)
should amount to no more than 10% of the channel resistance:

2Rcontact + Rsource + Rdrain + 2Rext < 0.10 (Rchannel)

To reduce Rsource, Rdrain, Rext, would like to increase xj

Problem:  deeper junctions make it easier for voltages at the drain to 
affect the current flow in the channel.  The 2D spreading of the electric
field from the drain can attract carriers from the source, even when
the device is supposed to be off: Drain Induced Barrier Lowering (DIBL).

Results in DESIGN TRADEOFF for VLSI MOS devices: series resistance
vs. DIBL (current control)
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Major challenge:  keep the junctions shallow, so DIBL is reduced
and at the same time, keep the resistance of the S/D regions small, so that 
the current drive is maximized.  These are CONFLICTING requirements.

From 1997 SIA NTRS.
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• The NTRS requirements in the future will require knowledge of
dopant positions with almost atomic-scale accuracy, in 2D and
3D profiles.

• Following are some examples from the present device scaling
literature.
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Short Channel Effect: source-drain distance is comparable
to the MOS depletion width in the vertical direction and the
source-drain potential has a strong effect on the control of
the current in the device

Constant doping,
long channel

From Y. Taur and T. Ning, Fundamentals Of Modern VLSI Devices,
Cambridge Univ. Press, p. 142. 

Short channel case

Vt is lower
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From Y. Taur and T. Ning, Fund. Of Modern VLSI Devices,
Cambridge Univ. Press, p. 140.
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Channel Doping Profile Engineering: Optimize Final Doping
Profiles of the p-type (NMOS) and n-type (PMOS) Dopants
in the Channel Region

http://developer.intel.com/technology/itj/q31998/articles/art_3.htm

From Intel article: Thompson, Packan, Bohr, MOS Scaling:
“Transistor Challenges for the 21st Century”
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Doping profiles in the channel region provide the same Vt, but
better leakage current control (can be scaled to smaller Leff)
http://developer.intel.com/technology/itj/q31998/articles/art_3.htm
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25 nm Gate Length MOSFET Design
Taur, Wann
and Frank,

IEDM 1998,
p. 789.

Halo or Pocket Profiles:  Improve Manufacturability
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Less variation of Vt with Leff allows larger design window
(for process variations), so can push the channel length
smaller (not a fundamental improvement in device performance)

Short-channel Threshold Voltage Roll-Off (Variation with Channel Length)

• Nearly flat short-channel Vt roll-off with super-halo profile
• Vt roll-off not too sensitive to vertical junction depth

Taur, Wann
and Frank,

IEDM 1998,
p. 789.
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Doping Profiles (for S/D dopants) in the Lateral Direction are
Becoming Critical

Taur, Wann
and Frank,

IEDM 1998,
p. 789.

Effect of lateral source-drain doping gradient on short-channel
roll-off.  For gradients larger than 4 nm/decade (laterally), the
Vt roll-off is too large for a 25 nm MOSFET.
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Originally:  predeposition was done by diffusion from doped glass
layers or by introduction into the Si by heating in a doped gas ambient

Modern:  usually done by ion implantation (Chapter 8)

Dopant Diffusion Fundamentals
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Dopants are soluble in bulk silicon up to a maximum value before
they precipitate into another phase (“solid solubility”).
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Dopants also have an “electrical” solubility that is different than
the solid solubility defined above.

Arsenic in Si
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As4V is a complex which is one possible explanation for
the electrically inactive (yet ‘substitutional’) As in silicon, 
at high As concentrations
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First consider macroscopic diffusion (later discuss atomistic diffusion
mechanisms and effects).

Macroscopic dopant diffusion is described by Fick’s first law, which
describes how the flux (flow) of dopant depends upon the doping gradient:

When concentration gradient goes to zero, the flow stops.
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This is similar to Fourier’s law of heat conduction, or ohm’s law for current flow.

Proportionality constant is the diffusivity D (cm2/s)

D is related to the atomic hop rate over an energy barrier (formation and 
migration energies of mobile species) and is exponentially activated (dependent
upon temperature).  D is isotropic in the silicon lattice (by symmetry).

The negative sign in Fick’s first law indicates that the flow is down the
concentration gradient.
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Fick’s Second Law:  describes how the change in concentration in a volume
element is determined by the change in fluxes in and out of the volume.

∆C = ∆F = Fin - Fout
∆t     ∆x         ∆x
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Analytic Solutions of the Diffusion Equation

Steady state:   no variation in the concentration with time:

= 0

Integrating:  C = a + bx     (linear profile over distance)

This pertained during solution of diffusion of oxidant through oxide
during thermal oxidation.
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Boundary conditions:  C --> 0   as   t --> 0  for x > 0  (delta function)

C --> infinity at   t -->  0   for x=0

⌠C(x,t)  dx = Q      (dose= constant)
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(at this distance, the dopant concentration falls by 1/e)

Diffusion length L = 2 √Dt
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Time evolution of a Gaussian diffusion profile

Peak concentration drops by
1/ √t
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2. Fixed Dose Q (constant in time): Diffusion Near a Surface

Assume:
• no dopant lost through evaporation or segregation at the surface
• annealing takes place for a long time, so initial profile is reasonably
approximated by a delta function (compared to final profile)
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Effectively, dose of 2Q is introduced into a (virtual) infinite medium
(by symmetry), so that C(x,t) is given by (Q--> 2Q from previous case):

Surface concentration
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Linear superposition
of solutions for each
of the thin slices:
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Where:

And  erfc(x) = 1 - erf(x)
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Example: diffusion from a
gas ambient into the solid,
with the gas concentration
above the solid solubility 
of the dopant
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Predeposition (constant surface conc.) Drive-in (constant dose Q)

erfc Gaussian
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1000C:  ni ~ 7 x 1018 cm-3
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Summary of Introduction to Diffusion

• Placement of doped regions determines many characteristics of
short-channel MOSFETs

• There is a design tradeoff between series resistance (needs deeper
source-drains), and short-channel effects such as the control of
the threshold voltage (needs shallower source-drains)

• Channel doping profile engineering is a way of compromising in 
this design tradeoff

• The time evolution of dopant profiles, in the simplest cases, is
governed by Fick’s laws (diffusion equation)

• For a few cases, there are analytic solutions to the diffusion equation:
- diffusion of a gaussian profile with fixed dose
- diffusion of an erfc (constant surface concentration)

• Intrinsic diffusion coefficients can be used when the doping is
less than ni at the diffusion temperature


