

$$\begin{aligned} & \begin{array}{c} & \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & &$$

Major challenge: keep the junctions shallow, so DIBL is reduced and at the same time, keep the resistance of the S/D regions small, so that the current drive is maximized. These are CONFLICTING requirements.

1007	1000	2002	1006	2000	2012
199/	1999	2003	2000	2009	2012
0.25µ	0.18µ	0.13µ	0.10µ	0.07μ	0.05µ
256M	1G	4 G	16G	64G	256G
1.8-	1.5-	1.2-	0.9-	0.6-	0.5-0.6
2.5	1.8	1.5	1.2	0.9	
4-5	3-4	2-3	1.5-2	<1.5	<1.0
100-	72-	52-	20-40	7.5-	5-10
200	144	104		15	
100-	70-	50-	40-80	15-30	10-20
200	140	100			
50-	36-72	26-52	20-40	15-30	10-20
100					
1x1018	1x10 ¹⁹	1x10 ^{ry}	1x10 ²⁰	1×10^{20}	1×10^{20}
From 1997 SIA NTRS					
	1997 0.25µ 256M 1.8- 2.5 4-5 100- 200 100- 200 50- 100 1x10 ¹⁸ From	1997 1999 0.25μ 0.18μ 256M 1G 1.8- 1.5- 2.5 1.8 4-5 3-4 100- 72- 200 144 100- 70- 200 144 100- 70- 200 140 50- 36-72 100 1x10 ¹⁸ 1x10 ¹⁸ 1x10 ¹⁹	1997 1999 2003 0.25μ 0.18μ 0.13μ 256M 1G 4G 1.8- 1.5- 1.2- 2.5 1.8 1.5 4-5 3-4 2-3 100- 72- 52- 200 144 104 100- 70- 50- 200 140 100 50- 36-72 26-52 100 1x10 ¹⁹ 1x10 ¹⁹	1997 1999 2003 2006 0.25μ 0.18μ 0.13μ 0.10μ 256M 1G 4G 16G 1.8- 1.5- 1.2- 0.9- 2.5 1.8 1.5 1.2 4-5 3-4 2-3 1.5-2 100- 72- 52- 20-40 200 144 104 100- 70- 50- 40-80 200 140 100 100 50- 36-72 26-52 20-40 100 1x10 ¹⁹ 1x10 ¹⁹ 1x10 ²⁰	19971999200320062009 0.25μ 0.18μ 0.13μ 0.10μ 0.07μ 256M1G4G16G64G 1.8 - 1.5 - 1.2 - 0.9 - 0.6 - 2.5 1.8 1.5 1.2 0.9 $4-5$ $3-4$ $2-3$ $1.5-2$ <1.5 100 - 72 - 52 - $20-40$ 7.5 - 200 144 104 15 100 - 70 - 50 - $40-80$ $15-30$ 200 140 100 $15-30$ 100 $1x10^{19}$ $1x10^{19}$ $1x10^{20}$ From 1997 SIA NTRS.

	Ion Implantation and Annealing	Solid/Gas Phase Diffusion
Advantages	Room temperature mask	No damage created by doping
	Precise dose control	Batch fabrication
	10 ¹¹ - 10 ¹⁶ atoms cm ⁻² doses	
	Accurate depth control	
Problems	Implant damage enhances diffusion	Usually limited to solid solubility
	Dislocations caused by damage may cause junction leakage	Low surface concentration hard to achieve without a long drive-in
	Implant channeling may affect profile	Low dose predeps very difficult

 Summary of Introduction to Diffusion Placement of doped regions determines many characteristics of short-channel MOSFETs There is a design tradeoff between series resistance (needs deeper source-drains), and short-channel effects such as the control of the threshold voltage (needs shallower source-drains) Channel doping profile engineering is a way of compromising in this design tradeoff The time evolution of dopant profiles, in the simplest cases, is governed by Fick's laws (diffusion equation) For a few cases, there are analytic solutions to the diffusion equation: diffusion of a gaussian profile with fixed dose diffusion of an erfc (constant surface concentration) Intrinsic diffusion coefficients can be used when the doping is less than n_i at the diffusion temperature 		
 Placement of doped regions determines many characteristics of short-channel MOSFETs There is a design tradeoff between series resistance (needs deeper source-drains), and short-channel effects such as the control of the threshold voltage (needs shallower source-drains) Channel doping profile engineering is a way of compromising in this design tradeoff The time evolution of dopant profiles, in the simplest cases, is governed by Fick's laws (diffusion equation) For a few cases, there are analytic solutions to the diffusion equation: diffusion of a gaussian profile with fixed dose diffusion of an erfc (constant surface concentration) Intrinsic diffusion coefficients can be used when the doping is less than n_i at the diffusion temperature 		Summary of Introduction to Diffusion
 There is a design tradeoff between series resistance (needs deeper source-drains), and short-channel effects such as the control of the threshold voltage (needs shallower source-drains) Channel doping profile engineering is a way of compromising in this design tradeoff The time evolution of dopant profiles, in the simplest cases, is governed by Fick's laws (diffusion equation) For a few cases, there are analytic solutions to the diffusion equation: diffusion of a gaussian profile with fixed dose diffusion of an erfc (constant surface concentration) Intrinsic diffusion coefficients can be used when the doping is less than n_i at the diffusion temperature 		 Placement of doped regions determines many characteristics of short-channel MOSFETs
 Channel doping profile engineering is a way of compromising in this design tradeoff The time evolution of dopant profiles, in the simplest cases, is governed by Fick's laws (diffusion equation) For a few cases, there are analytic solutions to the diffusion equation: diffusion of a gaussian profile with fixed dose diffusion of an erfc (constant surface concentration) Intrinsic diffusion coefficients can be used when the doping is less than n_i at the diffusion temperature 		 There is a design tradeoff between series resistance (needs deeper source-drains), and short-channel effects such as the control of the threshold voltage (needs shallower source-drains)
 The time evolution of dopant profiles, in the simplest cases, is governed by Fick's laws (diffusion equation) For a few cases, there are analytic solutions to the diffusion equation: diffusion of a gaussian profile with fixed dose diffusion of an erfc (constant surface concentration) Intrinsic diffusion coefficients can be used when the doping is less than n_i at the diffusion temperature 		 Channel doping profile engineering is a way of compromising in this design tradeoff
 For a few cases, there are analytic solutions to the diffusion equation: diffusion of a gaussian profile with fixed dose diffusion of an erfc (constant surface concentration) Intrinsic diffusion coefficients can be used when the doping is less than n_i at the diffusion temperature 		 The time evolution of dopant profiles, in the simplest cases, is governed by Fick's laws (diffusion equation)
Intrinsic diffusion coefficients can be used when the doping is less than n _i at the diffusion temperature <u>Fall, 2004</u> 6.774 Handout 14, p. 37		 For a few cases, there are analytic solutions to the diffusion equation: - diffusion of a gaussian profile with fixed dose - diffusion of an erfc (constant surface concentration)
Fall, 2004 6.774 Handout 14, p. 37		\bullet Intrinsic diffusion coefficients can be used when the doping is less than ${\bf n}_{\rm i}$ at the diffusion temperature
Fall, 2004 6.774 Handout 14, p. 37		
	Fall, 2004	6.774 Handout 14, p. 37